岳阳山特UPS电源生产厂家 降压变电站使用的自耦变压器,其运行方式可归纳为两大类型,一类是高压向中压(或低压)或者是同时向中低压低电,如上述接入系统方式中的a、b两种;另一类是高压和低压同时向中压供电,如上述接入系统方式中的b、c两种〔1〕为直观起见,举例来加以分析,假设某一变压器变量为120MVA,电压比为220/110/10kV,容量比为100/100/50,通常设计公共绕组的容量等于自耦变压器的计算容量,所以该变压器的公共绕组容量为:MVA(K12为高压侧与中压侧的变比) 〔2〕由此可知,高压侧额定电流为,高压侧额定电流即等于串联绕组的额定电流ICe; 中压侧额定电流为I2e=120?000/(31/2×110)=630A; 低压侧额定电流为I3e=60?000/(31/2×10)=3?464A; 公共绕组额定电流为IGe=计算容量/(31/2×110)=60?000(31/2×110)=315A。 降压变电站使用的自耦变压器第一类运行方式又可分为三种情形,如图1~3所示。 A.高压侧单独向中压侧供电(图1) 此时I3=0。该运行方式即为自耦变压器的自耦运行方式。高压侧以自耦方式向中压侧供电,有S1=S2。根据铁心中磁势平衡原理,有: 其中: I1、I2、I3分别为高压侧、中压侧、低压侧的电流;IAB、IDB分别为自耦方式运行时串联绕组、公共绕组的电流;IB为高、低压侧之间以变压器方式(电磁感应)运行时高压侧的电流;WAB、WCD、W3分别为串联绕组、公共绕组、低压绕组的匝数。 当自耦变压器在额定负荷下运行时,即S2=120MVA,U1=220kV,K12=2,可得:IC=IDB=315A 可见,在这种运行方式下,若变压器未过负荷,则公共绕组不会过负荷,所以此时自耦变压器的过负荷保护可按普通变压器的方式装设。 B.高压侧单独向低压侧供电(图2) 此时I2=0。该运行方式即为双绕组普通变压器的工作方式,高压侧以普通变压器方式向低压侧供电,有S1=S3。 当自耦变压器在额定负荷下运行时,即S3=60MVA,U1=220kV,可得:IG=IB=157.5A 可见,在这种运行方式下,即使变压器低压侧满负荷,则公共绕组中的电流也未达到额定值,所以,此时自耦变压器的过负荷保护可按普通变压器的方式装设。 C.高压侧同时向中低压侧供电方式的电流流向(图3) 这种方式可看作上面两种方式的迭加,高压侧输入容量分为两部分:、。 为高压侧以自耦方式传递给中压侧的容量,等于中压侧的输出容量,=S1,此时相当于高压侧单独向中压侧供电,高—中压绕组间自耦方式供电,IAB、IDB为串联绕组、公共绕组中流过的电流。 为高压侧以高、低压绕组间以变压器(电磁感应)方式传递的容量,等于低压侧的输出容量,=S3,相当于高压侧单独向低压侧供电,高—低压绕组间以电磁感应方式供电,IB为高压侧电流。 从图中可见,公共绕组中有两个电流:IDB和IB,且两电流方向相反,所以公共绕组中的电流为: IG=IDB-IB 当低压侧满负荷运行时,即本例中的S3=60MVA,则S2=60MVA,且有U1=220kV,K12=2,将其代入式(1-1′)、式(1-1〃),可以求得: 所以,公共绕组中的电流为:IG=IDB-IB=0 当中压侧满负荷运行时,即S2=120MVA,则S3=0MVA,将其代入式(1-1)或(1-2),同理,可求得:IDB=315A;IB=0A,所以,此时公共绕组的电流为:IG=IDB-IB=315A 从上述分析可知,这种运行方式下,若变压器未过负荷,则公共绕组中的电流将会在0~315A的范围内,而不会**过额定值,所以,此时自耦变压器的公共绕组不会过负荷,可不装设过负荷保护。 如图4所示,高低压侧同时向中压侧供电时中压则的输出容量由、两部分组成。 为高压侧以自耦方式传递给中压侧的容量,等于中压侧的输出容量,=S2,此时相当于高压侧单独向中压侧供电,高一中压绕组间可以自耦方式供电,IAB、IDB为串联绕组、公共绕组中流过的电流。 为高压侧以变压器方式(电磁感应)方式传递的容量,等于低压侧的输出容量,=S3,相当于高压侧单独向低压侧供电,IB为高压侧流过的电流。 方法如下: ⑴ 使用空调器本身的制冷剂排空气。 拧下高低压阀的后盖螺母、充氟嘴螺母,将高低压阀芯打开(旋1/41/2圈),等待约10秒钟后关闭。同时,从低压阀充氟嘴螺母处用内六角扳手将充氟针**向上**开,有空气排出。当手感有凉气冒出时停止排空。排氟量应小于20g。 ⑵ 使用真空泵排空气。 先将阀门充氟嘴螺母拧下,用抽真空连接软管进行连接。将“O”旋钮按逆时针方向旋转,使其打开,然后合上真空泵的开关,进行抽真空。停止抽真空后,还要将阀门后盖螺母拧下,用内六角扳手将阀芯按逆时针方向旋开到底,此时制冷系统的通路被打开。接着将连接软管从阀门上拆除下来,将阀门的连接螺母与后盖螺母拧紧。 ⑶ 外加氟利昂排空气使用独立的制冷剂罐,将制冷剂罐充注软管与低压阀充氟嘴连接,略微松开室外机高压阀上接管螺母。松开制冷剂罐的阀门,充入制冷剂2?3秒,然后关死。当制冷剂从高压阀门接管螺母处流出1015秒后,拧紧接管螺母。从充氟嘴处拆下充注软管,用内六角扳手**推充氟阀芯顶针,制冷剂放出。当再也听不到噪音时,放松顶针,上紧充氟嘴螺母,打开室外机高压阀芯。 6.制冷系统的清洗 在空调压缩机的电动机绝缘击穿、匝间短路或绕组烧毁以后,由于电动机烧毁后产生大量酸性氧化物而使制冷系统受到污染。因此,除了要更换压缩机、毛细管与干燥过滤器之外,还要对整个制冷系统进行彻底的清洗。 制冷系统的污染程度可分为:轻度与重度。轻度污染时制冷系统内冷冻油没有完全污染,从压缩机的工艺管放出制冷剂和冷冻油时,油的颜色是透明的。若用石蕊试纸试验,油呈淡黄色(正常为白色)。重度污染是严重的,当打开压缩机的工艺管时时,立即可闻到焦油味,从工艺管倒出冷冻油,颜色发黑,用石蕊试纸浸入油中,5分钟后,纸的颜色变为红色。空调系统清洗用的清洗剂为R113。清洗前先放出制冷系统管路内的制冷剂,拆卸压缩机,从工艺管中放出少量冷冻油检查其色、味,并看其有无杂质异物,以明确制冷系统污染的程度。 清洗过程如下:先将清洗剂R113注入液槽中,然后起动泵,使之运转,开始清洗。对于轻度的污染,只要循环1小时左右即可。而严重污染的,则需要3--4小时。洗净后,清洗剂可以回收,但经处理后方可再用,在贮液器中的清洗剂要从液管回收。若长时间清洗,清洗剂已脏,过滤器也会堵塞脏污,应更换清洗剂和过滤器以后再进行。清洗完毕,应对制冷管路进行氮气吹污和干燥处理。槽、过滤器和泵在干燥处理时一定要与管路部分断开。并在液压管、吸液管的法兰盘上安装盲板,然后用真空泵对系统进行抽真空,在抽真空过程中,要同时给制冷管路外面吹送热风,以利于快速干燥。后将制冷管路按原样装好,更换新的压缩机和过滤器。 电流互感器是一种按照原理制作的可测量交流电流的简单器件。作用及原理 电流互感器的主要所用是用来将交流电路中的大电流转换为一定比例的小电流(我国标准为5安倍),以供测量和继电保护只之用。大家应该知道在发电、变电、输电、配电过程中由于用电设备的不同,电流往往从几十安到几万安都有,而且这些电路还可能伴随高压。那么为了能够对这些线路的电路进行监控、测量,同时又要解决高压、高电流带来的危险,这时就需要用到电流互感器了。有些人可能见过电工用的钳形表 ,这是一种用来测量交流电流的设备,它那个“钳”便是穿心式电流互感器。